email a friend iconprinter friendly iconHurricanes
Page [ 2 ] of 8

Wilma was a record breaker in a season of unsettling records. Katrina, at the end of August, killed more than a thousand people and left much of New Orleans and the neighboring coast in ruins. The damage exceeded a hundred billion dollars—the costliest natural disaster in U.S. history—and the toll in fractured lives is incalculable. Rita, in September, rivaled Wilma in intensity and ravaged the Gulf Coast through western Louisiana and East Texas.

These three monster storms were part of an unmatched run of Atlantic hurricanes—15 in all. With a total of 27 named tropical storms, 2005 was the first year meteorologists exhausted their preseason list of 21 Atlantic cyclone names and had to dip into the Greek alphabet for the latecomers.

Days after Wilma, one visitor to Jimbo's was already worrying about what future hurricane seasons might bring. Sharan Majumdar, 34, is a hurricane researcher at the University of Miami's Rosenstiel School of Marine and Atmospheric Science, just across the highway from Jimbo's. He is one of a cadre of scientists trying to understand nature's most powerful storms and more reliably predict their surges, ebbs, and lurching paths from birth to landfall.

Swatting at sand flies on a warm November night, Majumdar says he can't really blame his fellow patrons at Jimbo's for deciding to stay put during Wilma. Forecasts today can get hurricane tracks wrong by hundreds of miles and wind speeds by tens of miles per hour. As a result, Majumdar says, "people often return after an evacuation to find nothing really happened." The solution, he says, is to improve forecasting through better science. "That's the only way to get people to trust the warnings."

The stakes have never been higher. Population is burgeoning along vulnerable coasts in the U.S., Asia, and the Caribbean. In the southeastern U.S., for example, coastal populations grew more than 50 percent from 1980 to 2003. The North Atlantic hurricane nursery, responding to a natural climate cycle, is experiencing a baby boom that isn't expected to end for a decade or more. And behind it all lurks the grim possibility that global warming is making these storms stronger.

Like all weather, hurricanes are fueled by heat—the heat of sun-drenched tropical seas, which powers the storms by sending warm, moist air rushing toward the frigid upper atmosphere like smoke up a chimney. As surrounding air is sucked in at the base of the storm, Earth's rotation gives it a twist, creating a whorl of rain bands. These whiptails of thunderstorm activity are strongest where they converge in a ring of rising, spinning air, the eyewall, which encloses the cloud-free eye.

Page [ 2 ] of 8