email a friend iconprinter friendly iconChanging Rains
Page [ 2 ] of 4

Then, about a century after it was founded, the Akkad empire suddenly collapsed. During one three-year period four men in succession briefly claimed to be emperor. "Who was king? Who was not king?" a register known as the Sumerian King List asks.

For many years, scholars blamed the empire's fall on politics. But about a decade ago, climate scientists examining records from lake bottoms and the ocean floor discovered that right around the time that the empire disintegrated, rainfall in the region dropped dramatically. It is now believed that Akkad's collapse was caused by a devastating drought. Other civilizations whose demise has recently been linked to shifts in rainfall include the Old Kingdom of Egypt, which fell right around the same time as Akkad; the Tiwanacu civilization, which thrived near Lake Titicaca, in the Andes, for more than a millennium before its fields were abandoned around A.D. 1100; and the Classic Maya civilization, which collapsed at the height of its development, around A.D. 800.

The rainfall changes that devastated these early civilizations long predate industrialization; they were triggered by naturally occurring climate shifts whose causes remain uncertain. By contrast, climate change brought about by increasing greenhouse gas concentrations is our own doing. It, too, will influence precipitation patterns, in ways that, though not always easy to predict, could prove equally damaging.

Warm air holds more water vapor—itself a greenhouse gas—so a hotter world is a world where the atmosphere contains more moisture. (For every degree Celsius that air temperatures increase, a given amount of air near the surface holds roughly 7 percent more water vapor.) This will not necessarily translate into more rain—in fact, most scientists believe that total precipitation will increase only modestly—but it is likely to translate into changes in where the rain falls. It will amplify the basic dynamics that govern rainfall: In certain parts of the world, moist air tends to rise, and in others, the moisture tends to drop out as rain and snow.

"The basic argument would be that the transfers of water are going to get bigger," explains Isaac Held, a scientist at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory at Princeton University. Climate models generally agree that over the coming century, the polar and subpolar regions will receive more precipitation, and the subtropics—the area between the tropical and temperate zones—will receive less. On a regional scale, the models disagree about some trends. But there is a consensus that the Mediterranean Basin will become more arid. So, too, will Mexico, the southwestern United States, South Africa, and southern Australia. Canada and northern Europe, for their part, will grow damper.

Page [ 2 ] of 4