email a friend iconprinter friendly iconYellowstone
Page [ 3 ] of 5

Each time, the whole planet would have felt the effects. Gases rising high into the stratosphere would have mixed with water vapor to create a thin haze of sulfate aerosols that dimmed sunlight, potentially plunging the Earth into years of "volcanic winter." According to some researchers, the DNA of our own species may pay witness to such a catastrophe around 74,000 years ago, when a supervolcano called Toba erupted in Indonesia. The ensuing volcanic winter may have contributed to a period of global cooling that reduced the entire human population to a few thousand individuals—a close shave for the human race.

For all their violence, the supervolcanoes have left little behind beyond a faintly perceptible sense of absence. The Yellowstone caldera has been eroded, filled in with lava flows and ash from smaller eruptions (the most recent was 70,000 years ago) and smoothed by glaciers. Peaceful forests cover any lingering scars. The combined effect makes it almost impossible to detect, unless you've got a good eye, like Doane had, or a geologist whispering in your ear.

"You're seeing two-thirds of the entire caldera," says Bob Smith. "The size is so immense that people don't appreciate it." Smith is a University of Utah geophysicist and a prominent expert on the supervolcano at Yellowstone. We're standing atop Lake Butte, an overlook at the east end of Yellowstone Lake, one of the best places to see the caldera. But I don't see it. I can see the lake spread out for miles beneath us and a few little hills to the north—old lava domes. But I can't follow the caldera rim visually because much of it is beneath the lake and because of the sheer scale of the thing—roughly 45 miles across. Like Doane atop Mount Washburn, I see only distant mountains on the hori­zon on either side and between them, to the west, the "unmountains," the emptiness where the land swallowed itself in the course of a few days.

The effects of the past eruptions are nevertheless profoundly felt in the present. The lodgepole pines that dominate the park's forests are adapted to growing in nutrient-poor soils, like those in the Yellowstone caldera. So too are the white­bark pines, whose nuts sustain grizzlies and black bears.

And of course, the land to this day is literally boiling over. The trout that riot in the rivers would not be so abundant without the warming effects of the hydrothermal springs at the bottom of frigid Yellowstone Lake. The park roils with geysers, fumaroles, mud volcanoes, and other hydrothermal activity. Half the geysers on the planet are in Yellowstone. The hydrothermal features change constantly in temperature and behavior, with new ones popping up in the forests, spewing clouds of steam visible from airplanes, exuding vapors that have been known to kill bison on the spot.

Page [ 3 ] of 5
- ADVERTISEMENT -